

.

.

20

20

25

60

60

60

(5)

(1)

6

6

(1)

10

1. Kon

Dr Chris Peters Business Manager – Fusion Technology

×

UK Atomic Energy Authority

© Copyright UKAEA

Fusion is now entering the 'delivery era'

UK Atomic Energy Authority

UKAEA's Mission

Lead the delivery of sustainable fusion power and maximise scientific and economic benefits

Fusion needs integrated solutions

High performance plasmas in JET

Heat exhaust in MAST Upgrade

Develop materials in Materials Research Facility (MRF) Reactor Design STEP and DEMO

Tritium handling in Hydrogen-3 Advanced Technology (H3AT)

Advanced computing and digital design

Robotic handling in RACE

FT Development Themes

Fusion power plant design parameters and standards

Prediction and validation of inservice behaviour

Innovation and designing with uncertainty TECHNOLOGY

Nuclear data & irradiation management

Manufacturing and inspection fit-for-

XX

UK Atomic Energy Authority

Component performance under combined loads

Technology for high magnetic fields

fusion

(inc. in-vessel repair)

© Copyright UKAEA

TECHNOLOGY

Applied Radiation Technology

Power Plant Integration

Applied Materials

Manufacturing and Qualification

Thermal Hydraulics

Fusion Test Facilities

Fusion Technology Facilities - Current

UK Atomic Energy Authority

HIVE

High heat flux testing

Heating by induction

30*30mm sample under test size

• 10-15 MW/m²

•

RADlab

Radiological Assay and Detection Lab (RADLab) housing neutron diagnostics and the UKAEA ADRIANA (Advanced Digital Radiometric Instrumentation for Applied Nuclear Activities) instrument suite.

- Digital systems for environmental radioactivity assay
- Broad energy germanium (BEGe™)
- Small anode germanium (SAGe[™]) detector systems
- Diamond detectors
- Thermoluminescent dosimeter (TLD)

Applied Materials Technology Laboratory

Materials testing and characterisation

- Small-scale sample testing
- · Design codes and standards for fusion
- Application specific material selection
- Digital Image Correlation (DIC) for stress, strain, and deformation capture and modelling
- Tensile and compression of up to 50kN
- Rotational torsion
- Temperatures of 1200°C to -190°C

Special Techniques Group

- Diffusion bonding
- Optical viewports
- Vacuum brazing
- Air furnacing
- Thin film operations

7

UK Atomic Energy Authority

Combined Loads Testing Facility

Component Size	1.7m x 0.5m x 0.7m		
Testing Environment	Vacuum or inert gas		
Water Cooling	200°C, 15 bar – 385°C, 155 bar		
Surface Heating	0.5 MW/m ² over 1m ²		
Simulated Volume Heating	Up to 100 kW		
Static Magnetic Field	4 Tesla		
Magnetic Impulse	dB/dT ~12 T/s		
Static Magnet	Split pair LHe superconducting magnets with NbTi conductor		
Pulsed Magnet	Water cooled copper conductor		

10

Suite of Thermal Hydraulic Relevant Facilities at FTF

Dedicated Thermal Hydraulics

SmalLab

Small-scale testing of isolated flow phenomena.

Understanding turbulence phenomena for benchmarking digital codes

Anna

Large-scale testing of single / multi-phase flows

Providing high-resolution data at high-temperature reactor conditions for further benchmarking.

Extensive collaboration across fission, fusion, and other industries

CHIMERA

Component-scale single phase water flows

Testing in full fusionrelevant conditions including magnetic field effects and upgrades to include liquid metal flows

(For Info Only slide) Typical Facility Parameters

UK Atomic Energy Authority

Coolant(s)	Water	Water	Water + LiPb
Power Input	~1 kW	250 kW	600 kW
Pressure	Atm.	15.5 MPa	15.5 MPa
Temperature	< 50 °C	328 °C	328 °C
Flow Rate	< 0.1 kg/s	3.5 kg/s	10.8 kg/s
Diagnostic Resolution	High	High	Low

* P, T & flow parameters for water conditions only

SmalLab

Small-scale testing of isolated single-phase water flow phenomena

ANNA

Large-scale single and multi-phase water flows

CHIMERA

Component-scale single phase water flows

Elsa

Reproducing a fusion relevant environment for testing demountable HTS connections, at cryo temps in a magnetic field

Based in UKAEA south Yorkshire, Elsa intends to test and develop magnet components and re-mountable joints under cryogenic-magnetic environments. These components will support STEP and other projects.

The rig comprises of three main elements:

- Cryostat with 4T superconducting magnet, and Variable Testing Insert (VTI) capable of hosting temperatures from 4.2K – 20K, to 77K.
- Data Acquisition System (DAQ)
- **Cryoplant** with control system for Helium and liquid nitrogen transfer

Elsa will provide data for parameters such as:

- Thermal stability e.g. ohmic heating
- Electrical performance and current distribution
- **Termination resistance** and its relationship to joint performance

XX

UK Atomic

Energy Authority

The UUT's will be large components such as multiple re-mountable joints in parallel

FTF Objectives

- De-risking components and assemblies before installation in Tokamak
- Substantiating digital predictive models
- Simulate affects of plasma perturbations e.g. disruption
- Verifying design based qualification
- Supporting regulatory approval
- Certifying manufactured solutions

XX

UK Atomic Energy Authority

© Copyright UKAEA

Thank You

16 OFFICIAL SENSITIVE -COMMERCIAL